Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.481
1.
Commun Med (Lond) ; 4(1): 84, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724730

BACKGROUND: Artificial Intelligence(AI)-based solutions for Gleason grading hold promise for pathologists, while image quality inconsistency, continuous data integration needs, and limited generalizability hinder their adoption and scalability. METHODS: We present a comprehensive digital pathology workflow for AI-assisted Gleason grading. It incorporates A!MagQC (image quality control), A!HistoClouds (cloud-based annotation), Pathologist-AI Interaction (PAI) for continuous model improvement, Trained on Akoya-scanned images only, the model utilizes color augmentation and image appearance migration to address scanner variations. We evaluate it on Whole Slide Images (WSI) from another five scanners and conduct validations with pathologists to assess AI efficacy and PAI. RESULTS: Our model achieves an average F1 score of 0.80 on annotations and 0.71 Quadratic Weighted Kappa on WSIs for Akoya-scanned images. Applying our generalization solution increases the average F1 score for Gleason pattern detection from 0.73 to 0.88 on images from other scanners. The model accelerates Gleason scoring time by 43% while maintaining accuracy. Additionally, PAI improve annotation efficiency by 2.5 times and led to further improvements in model performance. CONCLUSIONS: This pipeline represents a notable advancement in AI-assisted Gleason grading for improved consistency, accuracy, and efficiency. Unlike previous methods limited by scanner specificity, our model achieves outstanding performance across diverse scanners. This improvement paves the way for its seamless integration into clinical workflows.


Gleason grading is a well-accepted diagnostic standard to assess the severity of prostate cancer in patients' tissue samples, based on how abnormal the cells in their prostate tumor look under a microscope. This process can be complex and time-consuming. We explore how artificial intelligence (AI) can help pathologists perform Gleason grading more efficiently and consistently. We build an AI-based system which automatically checks image quality, standardizes the appearance of images from different equipment, learns from pathologists' feedback, and constantly improves model performance. Testing shows that our approach achieves consistent results across different equipment and improves efficiency of the grading process. With further testing and implementation in the clinic, our approach could potentially improve prostate cancer diagnosis and management.

3.
NPJ Regen Med ; 9(1): 20, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729990

Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.

4.
Cancers (Basel) ; 16(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38730657

Survivin was initially identified as a member of the inhibitor apoptosis (IAP) protein family and has been shown to play a critical role in the regulation of apoptosis. More recent studies showed that survivin is a component of the chromosome passenger complex and acts as an essential mediator of mitotic progression. Other potential functions of survivin, such as mitochondrial function and autophagy, have also been proposed. Survivin has emerged as an attractive target for cancer therapy because its overexpression has been found in most human cancers and is frequently associated with chemotherapy resistance, recurrence, and poor survival rates in cancer patients. In this review, we discuss our current understanding of how survivin mediates various aspects of malignant transformation and drug resistance, as well as the efforts that have been made to develop therapeutics targeting survivin for the treatment of cancer.

5.
Sci Total Environ ; 931: 172944, 2024 May 01.
Article En | MEDLINE | ID: mdl-38701919

Air pollution poses a significant threat to public health, while biogenic volatile organic compounds (BVOCs) play a crucial role in both aspects. However, the unclear relationship between BVOCs and air pollutants in the under-canopy space limits the accuracy of air pollution control and the exploitation of forest healthcare functions. To clarify the variation of BVOCs in forest therapy bases, and their impacts on ozone (O3) and fine particulate matter (PM2.5) at nose height, total VOCs (TVOCs) in the forest were collected during typical sunny days, while air pollutants and meteorological factors were observed simultaneously. The results showed that the branch-level emissions of P. tabuliformis were dominated by healthcare-effective monoterpenoids, with only α-pinene having relative air concentrations of over 5 % in forest air samples. The correlation between concentrations of under-canopy TVOCs and emission rates of BVOCs from P. tabuliformis was weak (p > 0.09) in all seasons. However, the correlation between concentrations of TVOCs and the concentrations of O3 and PM2.5 showed clear seasonal differences. In spring, TVOCs only showed a significant negative correlation with PM2.5 in the forest (p < 0.01). In summer and autumn, TVOCs were significantly negatively correlated with both O3 (p < 0.001) and PM2.5 (p < 0.01). Specifically, the negative linear relationships were more pronounced for O3 and oxygenated VOCs in autumn (R2 = 0.40, p < 0.001) than for other relationships. The relationship between air pollutant concentrations inside and outside the forest also showed significant seasonal differences, generally characterized by a weaker correlation between them during seasons of strong emissions. Therefore, BVOCs in coniferous forests are health functions as they can provide healthcare effects and mitigate the concentration of air pollutants in the forest, and the establishment of forest therapy bases in rural areas with low NOx can be a sensible approach to promote good health, well-being, and sustainable development.

6.
Prog Nucl Magn Reson Spectrosc ; 140-141: 1-41, 2024.
Article En | MEDLINE | ID: mdl-38705634

Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.

7.
Neuron ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38701789

Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.

8.
J Environ Manage ; 359: 121042, 2024 May 03.
Article En | MEDLINE | ID: mdl-38703652

Soil aggregates play pivotal roles in soil organic carbon (SOC) preservation and climate change. Biochar has been widely applied in agricultural ecosystems to improve soil physicochemical properties. However, the underlying mechanisms of SOC sequestration by soil aggregation with biochar addition are not well understood at a large scale. Here, we conducted a meta-analysis of 2335 pairwise data from 45 studies to explore how soil aggregation sequestrated SOC after biochar addition in agricultural ecosystems of China. Biochar addition markedly enhanced the proportions of macro-aggregates and aggregate stability, and the production of organic binding agents positively facilitated the formation of macro-aggregates and aggregate stability. Soil aggregate-associated organic carbon (OC) indicated a significantly increasement by biochar addition, which was attributed to direct and indirect inputs of OC from biochar and organic residues, respectively. Biochar stimulated SOC sequestration dominantly contributed by macro-aggregates, and it could be interpreted by a greater improvement in proportions and OC protection of macro-aggregates. Furthermore, the SOC sequestration of soil aggregation with biochar addition was regulated by climate conditions (mean annual temperature and precipitation), biochar attributes (biochar C/N ratio and pH), experimental practices (biochar addition level and duration), and agronomic managements (land type, cropping intensity, fertilization condition, and crop type). Collectively, our synthetic analysis emphasized that biochar promoted the SOC sequestration by improving soil aggregation in agricultural ecosystems of China.

9.
Nat Commun ; 15(1): 3700, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697989

Detecting early-stage esophageal squamous cell carcinoma (ESCC) and precancerous lesions is critical for improving survival. Here, we conduct whole-genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients with non-metastatic ESCC or precancerous lesions and matched healthy controls. We develop an expanded multimodal analysis (EMMA) framework to simultaneously identify cfDNA methylation, copy number variants (CNVs), and fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are the earliest and most sensitive, detectable in 70% of ESCCs and 50% of precancerous lesions, and associated with molecular subtypes and tumor microenvironments. CNVs and fragmentation features show high specificity but are linked to late-stage disease. EMMA significantly improves detection rates, increasing AUCs from 0.90 to 0.99, and detects 87% of ESCCs and 62% of precancerous lesions with >95% specificity in validation cohorts. Our findings demonstrate the potential of multimodal analysis of cfDNA methylome for early detection and monitoring of molecular characteristics in ESCC.


Biomarkers, Tumor , DNA Copy Number Variations , DNA Methylation , Early Detection of Cancer , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Precancerous Conditions , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/diagnosis , Precancerous Conditions/genetics , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Male , Early Detection of Cancer/methods , Female , Biomarkers, Tumor/genetics , Middle Aged , Aged , Epigenome , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Whole Genome Sequencing/methods , Tumor Microenvironment/genetics
10.
BMC Chem ; 18(1): 95, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702788

Cholesteryl ester transfer protein (CETP) is a promising therapeutic target for cardiovascular diseases. It effectively lowers the low-density lipoprotein cholesterol levels and increases the high-density lipoprotein cholesterol levels in the human plasma. This study identified novel and highly potent CETP inhibitors using virtual screening techniques. Molecular docking and molecular dynamics (MD) simulations revealed the binding patterns of these inhibitors, with the top 50 compounds selected according to their predicted binding affinity. Protein-ligand interaction analyses were performed, leading to the selection of 26 compounds for further evaluation. A CETP inhibition assay confirmed the inhibitory activities of the selected compounds. The results of the MD simulations revealed the structural stability of the protein-ligand complexes, with the binding site remaining significantly unchanged, indicating that the five compounds (AK-968/40709303, AG-690/11820117, AO-081/41378586, AK-968/12713193, and AN-465/14952302) identified have the potential as active CETP inhibitors and are promising leads for drug development.

11.
Ultrasonics ; 141: 107323, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38692211

Cased-hole logging using ultrasonic pitch-catch modality is a proven technique for cement bond evaluation in cased holes. However, complex measuring environments such as tool and casing eccentering makes it difficult to precisely separate and pick the third interface echoes from full ultrasonic Lamb waves, leading to ambiguous identification of annulus-formation interface. To overcome this problem, we propose an improved cased-hole reverse time migration approach for ultrasonic pitch-catch measurements to image the annulus-formation interface. The missing ultrasonic Lamb waveforms between far and near receivers due to insufficient spatial sampling are reconstructed based on the optimized theoretical phase velocity of zero-order anti-symmetric Lamb mode waves. Additionally, we apply the hybrid illumination imaging condition to mitigate the imaging noises around the true reflectors and sources. Data examples from a physical experimental well and a field well demonstrate that the proposed approach is an effective method for characterizing the annulus-formation interface without requiring precise knowledge of the velocity distribution in the region behind the casing. Furthermore, test on an experimental well has indicated that the method has the potential to detect the absence of cement in the annulus medium.

13.
Oncol Lett ; 27(6): 288, 2024 Jun.
Article En | MEDLINE | ID: mdl-38736745

At present, due to its wide application and relatively low cost, chemotherapy remains a clinically important cancer treatment option; however, a number of chemotherapeutic drugs have important limitations, such as lack of specificity, high toxicity and side effects, and multi-drug resistance. The emergence of nanocarriers has removed numerous clinical application limitations of certain antitumor chemotherapy drugs and has been widely used in the treatment of tumors with nanodrugs. The present study used carbon nanoparticles (CNPs) as a nanocarrier for doxorubicin (DOX) to form the novel nanomedicine delivery system (CNPs@DOX)was demonstrated by UV-vis and fluorescence spectrophotometry, ζ potential and TEM characterization experiments. The results confirmed the successful preparation of CNPs@DOX nanoparticles with a particle size of 96±17 nm, a wide range of absorption and a negatively charged surface. Furthermore, CNPs@DOX produced more reactive oxygen species and induced apoptosis, and thus exhibited higher cytotoxicity than DOX, which is a small molecule anticancer drug without a nanocarrier delivery system.. The present study provides a strategy for the treatment of tumors with nanomedicine.

14.
Materials (Basel) ; 17(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38730842

In this paper, a thorough investigation is presented on the static and dynamic behaviors of a short-span cable-stayed bridge (CSB) incorporating steel and carbon fiber reinforced polymer (CFRP) hybrid cables. The study focuses on the world's largest span and China's first highway, CFRP CSB. The performance of the CSB was compared using numerical simulations under four different cable patterns: steel cables, CFRP cables, and steel, and two types of hybrid cables with different structural arrangements. The results indicate that the use of the use of CFRP cables in the long cable region in the short-span CSB project investigated in this study offers improved performance in terms of stability, seismic response, and reduced displacements. In comparison to CFRP cables, hybrid cables have demonstrated a reduction of 12% in the maximum vertical displacement of the main girder. On the other hand, the hybrid cables result in reduced maximum internal forces and longitudinal and lateral displacements of the main girders and towers compared to steel cables. The difference in the arrangement of CFRP cables in the long cable region or short cable region is not obvious under dead loads, but significant differences still exist between the CFRP cable bridges in the short cable region and the long cable region in terms of live load effects, temperature effects, and dynamic characteristics.

15.
J Hazard Mater ; 471: 134380, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38657514

Health of honey bees is threatened by a variety of stressors, including pesticides and parasites. Here, we investigated effects of acetamiprid, Varroa destructor, and Nosema ceranae, which act either alone or in combination. Our results suggested that interaction between the three factors was additive, with survival risk increasing as the number of stressors increased. Although exposure to 150 µg/L acetamiprid alone did not negatively impact honey bee survival, it caused severe damage to midgut tissue. Among the three stressors, V. destructor posed the greatest threat to honey bee survival, and N. ceranae exacerbated intestinal damage and increased thickness of the midgut wall. Transcriptomic analysis indicated that different combinations of stressors elicited specific gene expression responses in honey bees, and genes involved in energy metabolism, immunity, and detoxification were altered in response to multiple stressor combinations. Additionally, genes associated with Toll and Imd signalling, tyrosine metabolism, and phototransduction pathway were significantly suppressed in response to different combinations of multiple stressors. This study enhances our understanding of the adaptation mechanisms to multiple stressors and aids in development of suitable protective measures for honey bees. ENVIRONMENTAL IMPLICATION: We believe our study is environmentally relevant for the following reasons: This study investigates combined effects of pesticide, Varroa destructor, and Nosema ceranae. These stressors are known to pose a threat to long-term survival of honey bees (Apis mellifera) and stability of the ecosystems. The research provides valuable insights into the adaptive mechanisms of honey bees in response to multiple stressors and developing effective conservation strategies. Further research can identify traits that promote honey bee survival in the face of future challenges from multiple stressors to maintain the overall stability of environment.


Neonicotinoids , Nosema , Varroidae , Animals , Bees/drug effects , Nosema/drug effects , Neonicotinoids/toxicity , Varroidae/drug effects , Insecticides/toxicity
16.
Int J Biol Macromol ; 267(Pt 1): 131448, 2024 May.
Article En | MEDLINE | ID: mdl-38593901

Nowadays, various harmful indoor pollutants especially including bacteria and residual formaldehyde (HCHO) seriously threaten human health and reduce the quality of public life. Herein, a universal substrate-independence finishing approach for efficiently solving these hybrid indoor threats is demonstrated, in which amine-quinone network (AQN) was employed as reduction agent to guide in-situ growth of Ag@MnO2 particles, and also acted as an adhesion interlayer to firmly anchor nanoparticles onto diverse textiles, especially for cotton fabrics. In contrast with traditional hydrothermal or calcine methods, the highly reactive AQN ensures the efficient generation of functional nanoparticles under mild conditions without any additional catalysts. During the AQN-guided reduction, the doping of Ag atoms onto cellulose fiber surface optimized the crystallinity and oxygen vacancy of MnO2, providing cotton efficient antibacterial efficiency over 90 % after 30 min of contact, companying with encouraging UV-shielding and indoor HCHO purification properties. Besides, even after 30 cycles of standard washing, the Ag@MnO2-decorated textiles can effectively degrade HCHO while well-maintaining their inherent properties. In summary, the presented AQN-mediated strategy of efficiently guiding the deposition of functional particles on fibers has broad application prospects in the green and sustainable functionalization of textiles.


Amines , Cellulose , Manganese Compounds , Oxides , Manganese Compounds/chemistry , Oxides/chemistry , Cellulose/chemistry , Amines/chemistry , Quinones/chemistry , Silver/chemistry , Formaldehyde/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Textiles , Air Pollution, Indoor/prevention & control
17.
Integr Cancer Ther ; 23: 15347354241247223, 2024.
Article En | MEDLINE | ID: mdl-38646808

BACKGROUND: Luteolin, a common dietary flavonoid found in plants, has been shown to have anti-cancer properties. However, its exact mechanisms of action in non-small cell lung cancer (NSCLC) are still not fully understood, particularly its role in regulating broader genomic networks and specific gene targets. In this study, we aimed to elucidate the role of microRNAs (miRNAs) in NSCLC treated with luteolin, using A549 cells as a model system. MATERIALS AND METHODS: miRNA profiling was conducted on luteolin-treated A549 cells using Exiqon microarrays, with validation of selected miRNAs by qRT-PCR. Bioinformatic analysis identified the regulatory roles of miRNAs in biological processes and pathways following luteolin treatment. Computational algorithms were employed to identify potential target genes. A549 cells were transfected with miR-106a-5p mimic and inhibitor or their corresponding controls. The expression levels of 2 genes, twist basic helix-loop-helix transcription factor 1 (TWIST1) and matrix metallopeptidase 2 (MMP2), and cell migration were assessed. RESULTS: miRNA profiling identified 341 miRNAs, with 18 exhibiting significantly altered expression (P < 0.05). Subsequent qRT-PCR analysis confirmed altered expression of 6 selected miRNAs. KEGG and GO analyses revealed significant alterations in pathways and biological processes crucial for tumor biology. TWIST1 and MMP2, which both contain conserved miR-106a-5p binding sites, exhibited an inverse correlation with the expression levels of miR-106a-5p. Dual-luciferase reporter assays confirmed TWIST1 and MMP2 as direct targets of miR-106a-5p. Luteolin treatment led to a reduction in A549 cell migration, and this reduction was further amplified by the overexpression of miR-106a-5p. CONCLUSION: Luteolin inhibits A549 cell migration by modulating the miRNA landscape, shedding light on its mechanisms and laying the foundation for miRNA-based therapeutic approaches for NSCLC.


Carcinoma, Non-Small-Cell Lung , Cell Movement , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Luteolin , Matrix Metalloproteinase 2 , MicroRNAs , Nuclear Proteins , Twist-Related Protein 1 , Up-Regulation , Humans , Luteolin/pharmacology , MicroRNAs/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Cell Movement/drug effects , Cell Movement/genetics , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , A549 Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Up-Regulation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics
18.
Cell Death Discov ; 10(1): 182, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637503

During the development of the vertebrate nervous system, 50% of the nerve cells undergo apoptosis shortly after formation. This process is important for sculpting tissue during morphogenesis and removing transiently functional cells that are no longer needed, ensuring the appropriate number of neurons in each region. Dysregulation of neuronal apoptosis can lead to neurodegenerative diseases. However, the molecular events involved in activating and regulating the neuronal apoptosis program are not fully understood. In this study, we identified several RB1 mutations in patients with neurodegenerative diseases. Then, we used a zebrafish model to investigate the role of Rb1 in neuronal apoptosis. We showed that Rb1-deficient mutants exhibit a significant hindbrain neuronal apoptosis, resulting in increased microglia infiltration. We further revealed that the apoptotic neurons in Rb1-deficient zebrafish were post-mitotic neurons, and Rb1 inhibits the apoptosis of these neurons by regulating bcl2/caspase through binding to Kmt5b. Moreover, using this zebrafish mutant, we verified the pathogenicity of the R621S and L819V mutations of human RB1 in neuronal apoptosis. Collectively, our data indicate that the Rb1-Kmt5b-caspase/bcl2 axis is crucial for protecting post-mitotic neurons from apoptosis and provides an explanation for the pathogenesis of clinically relevant mutations.

19.
Gen Psychiatr ; 37(2): e101347, 2024.
Article En | MEDLINE | ID: mdl-38616969

Background: Elevated platelet count (PLTc) is associated with first-episode schizophrenia and adverse outcomes in individuals with precursory psychosis. However, the impact of antipsychotic medications on PLTc and its association with symptom improvement remain unclear. Aims: We aimed to investigate changes in PLTc levels following antipsychotic treatment and assess whether PLTc can predict antipsychotic responses and metabolic changes after accounting for other related variables. Methods: A total of 2985 patients with schizophrenia were randomised into seven groups. Each group received one of seven antipsychotic treatments and was assessed at 2, 4 and 6 weeks. Clinical symptoms were evaluated using the positive and negative syndrome scale (PANSS). Additionally, we measured blood cell counts and metabolic parameters, such as blood lipids. Repeated measures analysis of variance was used to examine the effect of antipsychotics on PLTc changes, while structural equation modelling was used to assess the predictive value of PLTc on PANSS changes. Results: PLTc significantly increased in patients treated with aripiprazole (F=6.00, p=0.003), ziprasidone (F=7.10, p<0.001) and haloperidol (F=3.59, p=0.029). It exhibited a positive association with white blood cell count and metabolic indicators. Higher baseline PLTc was observed in non-responders, particularly in those defined by the PANSS-negative subscale. In the structural equation model, PLTc, white blood cell count and a latent metabolic variable predicted the rate of change in the PANSS-negative subscale scores. Moreover, higher baseline PLTc was observed in individuals with less metabolic change, although this association was no longer significant after accounting for baseline metabolic values. Conclusions: Platelet parameters, specifically PLTc, are influenced by antipsychotic treatment and could potentially elevate the risk of venous thromboembolism in patients with schizophrenia. Elevated PLTc levels and associated factors may impede symptom improvement by promoting inflammation. Given PLTc's easy measurement and clinical relevance, it warrants increased attention from psychiatrists. Trial registration number: ChiCTR-TRC-10000934.

20.
Schizophr Bull ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38635296

BACKGROUND: Cortical thickness (CT) alterations, mismatch negativity (MMN) reductions, and cognitive deficits are robust findings in first-episode psychosis (FEP). However, most studies focused on medicated patients, leaving gaps in our understanding of the interrelationships between CT, MMN, neurocognition, and psychosocial functioning in unmedicated FEP. This study aimed to employ multiple mediation analysis to investigate potential pathways among these variables in unmedicated drug-naïve FEP. METHODS: We enrolled 28 drug-naïve FEP and 34 age and sex-matched healthy controls. Clinical symptoms, neurocognition, psychosocial functioning, auditory duration MMN, and T1 structural magnetic resonance imaging data were collected. We measured CT in the superior temporal gyrus (STG), a primary MMN-generating region. RESULTS: We found a significant negative correlation between MMN amplitude and bilateral CT of STG (CT_STG) in FEP (left: r = -.709, P < .001; right: r = -.612, P = .008). Multiple mediation models revealed that a thinner left STG cortex affected functioning through both direct (24.66%) and indirect effects (75.34%). In contrast, the effects of the right CT_STG on functioning were mainly mediated through MMN and neurocognitive pathways. CONCLUSIONS: Bilateral CT_STG showed significant association with MMN, and MMN plays a mediating role between CT and cognition. Both MMN alone and its interaction with cognition mediated the effects of structural alterations on psychosocial function. The decline in overall function in FEP may stem from decreased CT_STG, leading to subsequent MMN deficits and neurocognitive dysfunction. These findings underline the crucial role of MMN in elucidating how subtle structural alterations can impact neurocognition and psychosocial function in FEP.

...